Defining dysbiosis and its influence on host immunity and disease
نویسندگان
چکیده
Mammalian immune system development depends on instruction from resident commensal microorganisms. Diseases associated with abnormal immune responses towards environmental and self antigens have been rapidly increasing over the last 50 years. These diseases include inflammatory bowel disease (IBD), multiple sclerosis (MS), type I diabetes (T1D), allergies and asthma. The observation that people with immune mediated diseases house a different microbial community when compared to healthy individuals suggests that pathogenesis arises from improper training of the immune system by the microbiota. However, with hundreds of different microorganisms on our bodies it is hard to know which of these contribute to health and more importantly how? Microbiologists studying pathogenic organisms have long adhered to Koch's postulates to directly relate a certain disease to a specific microbe, raising the question of whether this might be true of commensal-host relationships as well. Emerging evidence supports that rather than one or two dominant organisms inducing host health, the composition of the entire community of microbial residents influences a balanced immune response. Thus, perturbations to the structure of complex commensal communities (referred to as dysbiosis) can lead to deficient education of the host immune system and subsequent development of immune mediated diseases. Here we will overview the literature that describes the causes of dysbiosis and the mechanisms evolved by the host to prevent these changes to community structure. Building off these studies, we will categorize the different types of dysbiosis and define how collections of microorganisms can influence the host response. This research has broad implications for future therapies that go beyond the introduction of a single organism to induce health. We propose that identifying mechanisms to re-establish a healthy complex microbiota after dysbiosis has occurred, a process we will refer to as rebiosis, will be fundamental to treating complex immune diseases.
منابع مشابه
HLA-KIR Interactions and Immunity to Viral Infections
Host genetic factors play a central role in determining the clinical phenotype of human diseases. Association between two polymorphic loci in human genome, human leukocyte antigen (HLA) and killer cell immunoglobulin-like receptors (KIRs), and genetically complex infectious disease, particularly those of viral etiology, have been historically elusive. Hence, defining the influence of genetic di...
متن کاملThe influence of osteopontin on the pathogenesis of alopecia areata and its association with disease severity
Background: Alopecia Areata (AA) is an autoimmune disease affecting hair follicles. Although many details are well specified in the pathogenesis of the disease, there exist certain aspects which require more investigations. Given the fact that the increase in Th-1 immunity is the essential part of the pathogenesis, the incrimination of osteopontin, as a Th-1 cytokine, is considered appropriate ...
متن کاملDysbiosis in the Pathogenesis of Pediatric Inflammatory Bowel Diseases
Inflammatory bowel diseases (IBDs) are chronic inflammatory conditions of the gastrointestinal tract that occur in genetically susceptible individuals. Crohn's disease (CD) and ulcerative colitis (UC) are two major types of IBD. In about 20-25% of patients, disease onset is during childhood and pediatric IBD can be considered the best model for studying immunopathogentic mechanisms. The fundame...
متن کاملMore than complementing Tolls: complement-Toll-like receptor synergy and crosstalk in innate immunity and inflammation.
Complement and Toll-like receptors (TLRs) play key roles in the host immune response and are swiftly activated by infection or other types of immunological stress. This review focuses on the capacity of complement and TLRs to engage in signaling crosstalk, ostensibly to coordinate immune and inflammatory responses through synergistic or antagonistic (regulatory) interactions. However, overactiv...
متن کاملThe microbiota-gut-brain axis in gastrointestinal disorders: stressed bugs, stressed brain or both?
The gut-brain axis is the bidirectional communication between the gut and the brain, which occurs through multiple pathways that include hormonal, neural and immune mediators. The signals along this axis can originate in the gut, the brain or both, with the objective of maintaining normal gut function and appropriate behaviour. In recent years, the study of gut microbiota has become one of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 16 شماره
صفحات -
تاریخ انتشار 2014